Skip to content

习题7.5

第 1 题

第 2 题

第 3 题

第 4 题

第 5 题

设曲线 \(y = y(x)\) 满足 \(4x^2y''-4xy' - y = 0\), 过点 \((1, 4)\), 且在点 \((1, 4)\) 处与 \(x\) 轴夹角为 \(\frac{\pi}{4}\), 求 \(y = y(x)\).

\(y = x^\lambda\), 则 \(4\lambda(\lambda - 1) + 4\lambda - 1 = 0\). 解得 \(\lambda_1 = \frac{1}{2}, \lambda_2 = -\frac{1}{2}\). 故通解为 \(y = C_1\sqrt{x} + \frac{C_2}{\sqrt{x}}\). 求导得 \(y' = \frac{C_1}{2\sqrt{x}} - \frac{C_2}{2x\sqrt{x}}\). 由题

\[ \begin{cases} y(1) = 4 \\ y'(1) = 1 \end{cases} \Longrightarrow \begin{cases} C_1 + C_2= 4 \\ \frac{1}{2}(C_1 - C_2) = 1 \end{cases} \]

解得 \(C_1 = 3, C_2 = 1\). 故 \(y = 3\sqrt{x} + \frac{1}{\sqrt{x}}\).

第 6 题

\(y = e^{2x} + (1 + x)e^x\) 为微分方程 \(y'' + ay' + by = ce^x\) 的一个解, 求常系数 \(a, b, c\) 及微分方程的通解.

第 7 题

已知连续函数 \(y = f(x)\) 满足

\[ f(x) = \sin x + \int_{0}^{x}(t-x)f(t)\text{d}{t}, \]

\(y = f(x)\).

\(f(0) = 0\). 由 \(f(x) = \sin x + \int_{0}^{x}tf(t)\text{d}{t} - x\int_{0}^{x}f(t)\text{d}{t}\) 两边求导得 \(f'(x) = \cos x + xf(x) - \left(xf(x) + \int_{0}^{x}f(t)\text{d}{t}\right) = \cos x - \int_{0}^{x}f(t)\text{d}{t}\). 这蕴含着 \(f'(0) = 1\). 再次求导得 \(f''(x) = -\sin x - f(x)\), 即 \(y'' + y = -\sin x\). 考虑方程 \(z'' + z = e^{-ix}\). 特征方程为 \(\lambda^2 + 1 = 0\), \(\lambda_1 = i, \lambda_2 = -i\). 因此 \(\lambda = -i\) 为特征方程的一个根. 设其有特解 \(Z(x) = Axe^{-ix}\), 代入有 \(A = \frac{i}{2}\), 则 \(Z(x) = \frac{i}{2}e^{-ix}, \text{Im}{Z(x)} = \frac{1}{2}x\cos x\). 故原微分方程有通解 \(y = C_1\cos x + C_2\sin x + \frac{1}{2}x\cos x\). 又因为 \(f(0) = 0, f(1) = 1\), 故 \(C_1 = 0, C_2 = \frac{1}{2}\). 因此 \(f(x) = \frac{1}{2}\sin x + \frac{1}{2}x\cos x\).