Skip to content

第1章总复习题

第 15 题

\(f(x, y)\) 是可微函数, 且满足以下条件: \(\lim\limits_{x^2 + y^2 \to +\infty}\dfrac{f(x, y)}{\sqrt{x^2 + y^2}} = +\infty\), 试证明: 对于任意的 \(\mathbf{v} = (v_1, v_2)\), 都存在点 \((x_0, y_0)\), 使得 \(\nabla f(x_0, y_0) = \mathbf{v}\).

证明

作辅助函数 \(g(x, y) = f(x, y) - v_1 x - v_2 y\), 则

\[ \lim\limits_{x^2 + y^2 \to +\infty}\dfrac{g(x, y)}{\sqrt{x^2 + y^2}} = \lim\limits_{x^2 + y^2 \to +\infty}\dfrac{f(x, y)}{\sqrt{x^2 + y^2}} - \lim\limits_{x^2 + y^2 \to +\infty}\dfrac{v_1 x}{\sqrt{x^2 + y^2}} - \lim\limits_{x^2 + y^2 \to +\infty}\dfrac{v_2 y}{\sqrt{x^2 + y^2}} = +\infty \]

考虑 \(g(x, y)\)\(\mathbb{R}^2\) 上的极小值点 \(P(x_0, y_0)\), 有 \(\nabla g(x_0, y_0) = \mathbf{0}\), 此即 \(\nabla f(x_0, y_0) = \mathbf{v}\).

第 17 题

已知点 \(P(a, b)\) 在曲线 \(f(x, y) = 0\) 上, 点 \(Q(c, d)\) 在曲线 \(g(x, y) = 0\) 上, 其中 \(f, g\) 可微, 证明: 若 \(|PQ|\) 为两条曲线的距离, 则 \(\dfrac{a - c}{b - d} = \dfrac{f_1'(a, b)}{f_2'(a, b)} = \dfrac{g_1'(c, d)}{g_2'(c, d)}\). 利用此结论求椭圆 \(x^2 + 2xy + 5y^2 - 16y = 0\) 与直线 \(x - y - 8 = 0\) 的距离.

由于 \(|PQ|\) 为两条曲线间的距离, 故由题知 \(\vec{PQ} \parallel \nabla f(a, b) \parallel \nabla g(c, d)\). 此即

\[ \dfrac{a - c}{b - d} = \dfrac{f_1'(a, b)}{f_2'(a, b)} = \dfrac{g_1'(c, d)}{g_2'(c, d)} \]

在此例中, \(f_1'(x, y) = 2x + 2y, f_2'(x, y) = 2x + 10y - 16, g_1'(x, y) = 1, g_2'(x, y) = -1\). 代入有方程

\[ \begin{cases} \dfrac{a - c}{b - d} = \dfrac{2a + 2b}{2a + 10b - 16} = \dfrac{1}{-1}, \\ a^2 + 2ab + 5b^2 - 16b = 0, \\ c - d - 8 = 0. \end{cases} \]

解得 \(|PQ| = \min\{6\sqrt{2} + 4, 6\sqrt{2} - 4\} = 6\sqrt{2} - 4\).