Skip to content

习题3.2

第 2 题

证明: \(1.96<\iint\limits_{\left|x\right| + \left|y\right| \le 10}\dfrac{\text{d}{x}\text{d}{y}}{100 + \cos^2 x + \cos^2 y}<2\).

证明

由于 \(\cos^2 x + \cos^2 y \in [0, 2]\), 因此

\[ 1.96<\dfrac{200}{102} < \iint\limits_{\left|x\right| + \left|y\right| \le 10}\dfrac{\text{d}{x}\text{d}{y}}{100 + \cos^2 x + \cos^2 y}<\dfrac{200}{100} = 2. \]

第 3 题

比较下列各组积分值的大小.

(1) \(\iint\limits_{D}(x + y)^2\text{d}{x}\text{d}{y}\)\(\iint\limits_{D}(x + y)^3\text{d}{x}\text{d}{y}\), 其中 \(D = \{(x, y) | (x - 2)^2 + (y - 2)^2 \le 2\}\);

(2) \(\iint\limits_{D}\ln(x + y)\text{d}{x}\text{d}{y}\)\(\iint\limits_{D}xy\text{d}{x}\text{d}{y}\), 其中 \(D\) 由直线 \(x = 0, y = 0, x + y = \dfrac{1}{2}, x + y = 1\) 围成.

(1) 由于在 \(D\) 上有 \(x + y \ge 1\), 因此 \(\iint\limits_{D}(x + y)^2\text{d}{x}\text{d}{y} \le \iint\limits_{D}(x + y)^3\text{d}{x}\text{d}{y}\).

(2) 由于在 \(D\) 上有 \(xy \ge \ln(x + y)\), 因此 \(\iint\limits_{D}\ln(x + y)\text{d}{x}\text{d}{y} \le \iint\limits_{D}xy\text{d}{x}\text{d}{y}\).

第 4 题

\(D \subset \mathbb{R}^2\) 为有界闭矩形, 非负函数 \(f(x, y) \in C(D)\), 证明: 若 \(\iint\limits_{D}f(x, y)\text{d}{x}\text{d}{y} = 0\), 则 \(f(x, y) = 0, \forall (x, y) \in D\).

证明

反证法. 假设 \(\exists P_0(x_0, y_0)\) 使得 \(f(x_0, y_0) \neq 0\), 则 \(\exists \delta > 0\), 使得 \(\forall (x, y) \in B(P_0, \delta)\), 均有 \(f(x, y) > 0\). 因此 \(\iint\limits_{B(P_0, \delta)\subset D}f(x, y)\text{d}{x}\text{d}{y} > 0\). 而其他区域上 \(f(x, y)\) 非负, 所以 \(\iint\limits_{D}f(x, y)\text{d}{x}\text{d}{y} \ge \iint\limits_{B(P_0, \delta)\subset D}f(x, y)\text{d}{x}\text{d}{y} > 0\). 与题目条件矛盾. 故 \(f(x, y) = 0, \forall (x, y) \in D\).

第 5 题

函数 \(f(x, y)\)\((0, 0)\) 的某个邻域内连续, 计算极限 \(\lim\limits_{r \to 0^{+}}\dfrac{1}{r^2}\iint\limits_{x^2 + y^2 \le r^2}f(x, y)\text{d}{x}\text{d}{y}\).

证明

由于 \(f(x, y)\)\(O(0, 0)\) 的某个邻域内连续, 不妨记为 \(B(O, \delta)\), 因此由多元函数的中值定理可得 \(\exists \xi, \eta \in (0, \min\{\delta, r\})\) 使得 \(\iint\limits_{x^2 + y^2 \le r^2}f(x, y)\text{d}{x}\text{d}{y} = f(\xi, \eta)\iint\limits_{x^2 + y^2 \le r^2}\text{d}{x}\text{d}{y} = \pi r^2 f(\xi, \eta)\). 故

\[ \lim\limits_{r \to 0^{+}}\dfrac{1}{r^2}\iint\limits_{x^2 + y^2 \le r^2}f(x, y)\text{d}{x}\text{d}{y} = \lim\limits_{r \to 0^{+}}\dfrac{f(\xi, \eta)}{r^2}\pi r^2 = \pi f(0, 0) \]