Skip to content

习题6.1

第 2 题

求下列函数项级数的收敛域, 并指出使级数绝对收敛、条件收敛的 \(x\) 的范围.

(1) \(\sum\limits_{n = 1}^{\infty}ne^{-nx}\);

(2) \(\sum\limits_{n = 1}^{\infty}\left(\dfrac{\ln x}{3}\right)^n\);

(3) \(\sum\limits_{n = 1}^{\infty}\left(\dfrac{n + 1}{x}\right)^n\);

(4) \(\sum\limits_{n = 1}^{\infty}x^n\sin\dfrac{x}{2^n}\);

(5) \(\sum\limits_{n = 1}^{\infty} \dfrac{1}{1 + x^n}\);

(1) 该级数每一项都为正数, 故绝对收敛域等于收敛域. 由于 \(\lim\limits_{n \to \infty}\sqrt[n]{ne^{-nx}} = e^{-x}\), 故当 \(x < 0\)\(\lim\limits_{n \to \infty}\sqrt[n]{u_n} > 1\), \(\sum\limits_{n = 1}^{\infty}u_n\) 发散; 当 \(x > 0\)\(\lim\limits_{n \to \infty}\sqrt[n]{u_n} < 1\), \(\sum\limits_{n = 1}^{\infty}\) 收敛. 又因为当 \(x = 0\)\(\sum\limits_{n = 1}^{\infty}u_n = \sum\limits_{n = 1}^{\infty}n\) 发散, 故该级数的绝对收敛域为 \((0, +\infty)\).

(2) \(\sum\limits_{n = 1}^{\infty}\left(\dfrac{\ln x}{3}\right)^n = \dfrac{\ln x}{3 - \ln x}\lim\limits_{n \to \infty}\left(1 - \left(\dfrac{\ln x}{3}\right)^n\right)\). 因此当 \(\left|\dfrac{\ln x}{3}\right|< 1\), 即 \(x \in (e^{-3}, e^3)\) 时级数收敛. 当 \(x = e^{-3}\)\(\sum\limits_{n = 1}^{\infty}u_n = \sum\limits_{n = 1}^{\infty}(-1)^n\) 发散. 当 \(x = e^3\)\(\sum\limits_{n = 1}^{\infty}u_n = \sum\limits_{n = 1}^{\infty}1\) 发散. 故该级数的收敛域为 \((e^{-3}, e^3)\).

再考虑绝对收敛域. 由于当 \(\left|\dfrac{\ln x}{3}\right|< 1\), 即 \(x \in (e^{-3}, e^3)\)\(\lim\limits_{n \to \infty}\left|\dfrac{\ln x}{3}\right|^n = 0\), 故该级数的绝对收敛域也为 \((e^{-3}, e^3)\).

(3) 由于对任意 \(x \in \mathbb{R}\), 都有 \(\lim\limits_{n \to \infty}\sqrt[n]{u_n} = \lim\limits_{n \to \infty}\dfrac{n + 1}{x}\) 不存在, 因此收敛域为 \(\varnothing\).

(4) 该级数每一项都为正数, 故绝对收敛域等于收敛域. 由于 \(\lim\limits_{n \to \infty}\dfrac{u_{n + 1}}{u_n} = \lim\limits_{n \to \infty}\dfrac{x^{n + 1}\sin\frac{x}{2^{n + 1}}}{x^n\sin\frac{x}{2^n}} = \lim\limits_{n\to \infty}\dfrac{x}{2\cos\frac{x}{2^{n + 1}}} = \dfrac{x}{2}\), 因此当 \(x \in (-2, 2)\) 时该级数收敛. 当 \(x = \pm2\) 时, \(\lim\limits_{n \to \infty}u_n = \lim\limits_{n \to \infty}x^n\cdot\dfrac{x}{2^n} = \lim\limits_{n \to \infty}\dfrac{(\pm 2)^{n + 1}}{2^n} \neq 0\), 此时该级数发散. 故该级数的绝对收敛域为 \((-2, 2)\).

(5) 当 \(x \in (-1, 1)\) 时, 由于 \(\lim\limits_{n \to \infty}u_n = \lim\limits_{n \to \infty}\dfrac{1}{1 + x^n} = 1 \neq 0\), 故此时该级数发散. 当 \(x = -1\) 时该级数不存在. 当 \(x = 1\) 时, 该级数等于 \(\sum\limits_{n = 1}^{\infty}\dfrac{1}{2}\) 发散.

考虑 \(\dfrac{u_{n + 1}}{u_n} = \dfrac{1 + x^n}{1 + x^{n + 1}}\). 当 \(\left|x\right| > 1\) 时, \(\lim\limits_{n \to \infty}\left|\dfrac{u_{n + 1}}{u_n}\right| = \lim\limits_{n \to \infty}\left|\dfrac{1 + x^n}{1 + x^{n + 1}}\right| = \lim\limits_{n \to \infty}\left|\dfrac{\frac{1}{x^n} + 1}{\frac{1}{x^n} + x}\right| = \dfrac{1}{\left|x\right|} < 1\), 该级数绝对收敛. 综上所述, 该级数在 \(\{x | \left|x\right| > 1\}\) 上收敛, 且绝对收敛.

第 3 题

下列函数项级数在收敛域上是否一致收敛?

(1) \(\sum\limits_{n = 1}^{\infty}\dfrac{1 - \cos nx}{n^2}\);

(3) \(\sum\limits_{n = 1}^{\infty}x^3e^{-nx^2}\);

(5) \(\sum\limits_{n = 1}^{\infty}\dfrac{\cos nx + \sin n^x}{n^{1.001}}\);

(1) 由于 \(\left|\dfrac{1 - \cos nx}{n^2}\right| \le \dfrac{2}{n^2}\)\(\sum\limits_{n = 1}^{\infty}\dfrac{2}{n^2}\) 收敛, 因此由 Weierstrass 判别法知 \(\sum\limits_{n = 1}^{\infty}\dfrac{1 - \cos nx}{n^2}\) 在收敛域上一致收敛.

(3) 由于 \(e^{nx^2} \ge 1 + (nx^2) + \dfrac{1}{2}(nx^2)^2\), 故

\[ \left|\dfrac{x^3}{e^{nx^2}}\right| \le \dfrac{\left|x^3\right|}{1 + (nx^2) + \dfrac{1}{2}(nx^2)^2} \le \dfrac{\left|x^3\right|}{(nx^2) + \dfrac{1}{2}(nx^2)^2} \le \dfrac{\left|x^3\right|}{2\sqrt{(nx^2)}\cdot\dfrac{1}{2}(nx^2)^2} = \dfrac{\left|x^3\right|}{\sqrt{2n^3}\left|x^3\right|} = \dfrac{1}{\sqrt{2n^3}}. \]

\(\sum\limits_{n = 1}^{\infty}\dfrac{1}{\sqrt{2n^3}}\) 收敛, 因此由 Weierstrass 判别法知 \(\sum\limits_{n = 1}^{\infty}x^3e^{-nx^2}\) 在收敛域上一致收敛.

(5) 由于 \(\left|\dfrac{\cos nx + \sin n^x}{n^{1.001}}\right| \le \dfrac{2}{n^{1.001}}\), 且 \(\sum\limits_{n = 1}^{\infty}\dfrac{2}{n^{1.001}}\) 收敛, 因此由 Weierstrass 判别法知 \(\sum\limits_{n = 1}^{\infty}\dfrac{\cos nx + \sin n^x}{n^{1.001}}\) 在收敛域上一致收敛.

第 4 题

考察级数 \(\sum\limits_{n = 1}^{\infty}\dfrac{(-1)^n}{x + 2^n}\)\([0, +\infty)\) 上是否一致收敛?

一致收敛. 记 \(u_n(x) = (-1)^n\). 由于 \(\left|\sum\limits_{k = 1}^{n}u_k(x)\right| \le 1\) 部分和有界, 且 \(v_n(x) = \dfrac{1}{x + 2^n}\) 对于任意的 \(x \in [0, +\infty)\) 都单调且一致趋于 \(0\), 故由 Dirichlet 判别法知 \(\sum\limits_{n = 1}^{\infty}\dfrac{(-1)^n}{x + 2^n} = \sum\limits_{n = 1}^{\infty}u_n(x)v_n(x)\) 一致收敛.

第 5 题

证明级数 \(\sum\limits_{n = 1}^{\infty}\dfrac{(-1)^n}{x^2 + n}\)\(x \in (-\infty, +\infty)\) 上一致收敛, 但不绝对收敛.

证明

\(u_n(x) = (-1)^n\). 由于 \(\left|\sum\limits_{k = 1}^{n}u_k(x)\right| \le 1\) 部分和有界, 且 \(v_n(x) = \dfrac{1}{x^2 + n}\) 对于任意的 \(x \in (-\infty, +\infty)\) 都单调且一致趋于 \(0\), 故由 Dirichlet 判别法知 \(\sum\limits_{n = 1}^{\infty}\dfrac{(-1)^n}{x^2 + n} = \sum\limits_{n = 1}^{\infty}u_n(x)v_n(x)\) 一致收敛.

\(x = 1\)\(\sum\limits_{n = 1}^{\infty}\left|u_n\right| = \sum\limits_{n = 1}^{\infty}\dfrac{1}{1 + n}\) 发散, 因此该级数不绝对收敛.